skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Velusamy, Santhoshini"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We explore the use of local algorithms in the design of streaming algorithms for the Maximum Directed Cut problem. Specifically, building on the local algorithm of (Buchbinder, Feldman, Seffi, and Schwartz [14] and Censor-Hillel, Levy, and Shachnai [16]), we develop streaming algorithms for both adversarially and randomly ordered streams that approximate the value of maximum directed cut in bounded-degree graphs. In n-vertex graphs, for adversarially ordered streams, our algorithm uses O (n1-Ω(1)) (sub-linear) space and for randomly ordered streams, our algorithm uses logarithmic space. Moreover, both algorithms require only one pass over the input stream. With a constant number of passes, we give a logarithmic-space algorithm which works even on graphs with unbounded degree on adversarially ordered streams. Our algorithms achieve any fixed constant approximation factor less than 1/2. In the single-pass setting, this is tight: known lower bounds show that obtaining any constant approximation factor greater than 1/2 is impossible without using linear space in adversarially ordered streams (Kapralov and Krachun [37]) and space in randomly ordered streams, even on bounded degree graphs (Kapralov, Khanna, and Sudan [35]). In terms of techniques, our algorithms partition the vertices into a small number of different types based on the structure of their local neighborhood, ensuring that each type carries enough information about the structure to approximately simulate the local algorithm on a vertex with that type. We then develop tools to accurately estimate the frequency of each type. This allows us to simulate an execution of the local algorithm on all vertices, and thereby approximate the value of the maximum directed cut. 
    more » « less
    Free, publicly-accessible full text available January 12, 2026
  2. We explore the use of local algorithms in the design of streaming algorithms for the Maximum Directed Cut problem. Specifically, building on the local algorithm of (Buchbinder, Feldman, Seffi, and Schwartz [14] and Censor-Hillel, Levy, and Shachnai [16]), we develop streaming algorithms for both adversarially and randomly ordered streams that approximate the value of maximum directed cut in bounded-degree graphs. In n-vertex graphs, for adversarially ordered streams, our algorithm uses O (n1-Ω(1)) (sub-linear) space and for randomly ordered streams, our algorithm uses logarithmic space. Moreover, both algorithms require only one pass over the input stream. With a constant number of passes, we give a logarithmic-space algorithm which works even on graphs with unbounded degree on adversarially ordered streams. Our algorithms achieve any fixed constant approximation factor less than 1/2. In the single-pass setting, this is tight: known lower bounds show that obtaining any constant approximation factor greater than 1/2 is impossible without using linear space in adversarially ordered streams (Kapralov and Krachun [37]) and space in randomly ordered streams, even on bounded degree graphs (Kapralov, Khanna, and Sudan [35]). In terms of techniques, our algorithms partition the vertices into a small number of different types based on the structure of their local neighborhood, ensuring that each type carries enough information about the structure to approximately simulate the local algorithm on a vertex with that type. We then develop tools to accurately estimate the frequency of each type. This allows us to simulate an execution of the local algorithm on all vertices, and thereby approximate the value of the maximum directed cut. 
    more » « less
    Free, publicly-accessible full text available January 12, 2026
  3. Abstract An ordering constraint satisfaction problem (OCSP) is defined by a family$$\mathcal F$$ F of predicates mapping permutations on$$\{1,\ldots,k\}$$ { 1 , , k } to$$\{0,1\}$$ { 0 , 1 } . An instance of ($$\mathcal F$$ F ) onnvariables consists of a list of constraints, each consisting of a predicate from$$\mathcal F$$ F applied onkdistinct variables. The goal is to find an ordering of thenvariables that maximizes the number of constraints for which the induced ordering on thekvariables satisfies the predicate. OCSPs capture well-studied problems including ‘maximum acyclic subgraph’ () and “maximum betweenness”. In this work, we consider the task of approximating the maximum number of satisfiable constraints in the (single-pass) streaming setting, when an instance is presented as a stream of constraints. We show that for every$$\mathcal F$$ F , ($$\mathcal F$$ F ) is approximation-resistant to o(n)-space streaming algorithms, i.e., algorithms using o(n) space cannot distinguish streams where almost every constraint is satisfiable from streams where no ordering beats the random ordering by a noticeable amount. This space bound is tight up to polylogarithmic factors. In the case of , our result shows that for every$$\epsilon>0$$ ϵ > 0 , is not$$(1/2+\epsilon)$$ ( 1 / 2 + ϵ ) -approximable in o(n) space. The previous best inapproximability result, due to Guruswami & Tao (2019), only ruled out 3/4-approximations in$$o(\sqrt n)$$ o ( n ) space. Our results build on recent works of Chou et al. (2022b, 2024) who provide a tight, linear-space inapproximability theorem for a broad class of “standard” (i.e., non-ordering) constraint satisfaction problems (CSPs) over arbitrary (finite) alphabets. Our results are obtained by building a family of appropriate standard CSPs (one for every alphabet sizeq) from any given OCSP and applying their theorem to this family of CSPs. To convert the resulting hardness results for standard CSPs back to our OCSP, we show that the hard instances from this earlier theorem have the following “partition expansion” property with high probability: For every partition of thenvariables into small blocks, for most of the constraints, all variables are in distinct blocks. 
    more » « less
  4. A constraint satisfaction problem (CSP),\(\textsf {Max-CSP}(\mathcal {F})\), is specified by a finite set of constraints\(\mathcal {F}\subseteq \lbrace [q]^k \rightarrow \lbrace 0,1\rbrace \rbrace\)for positive integersqandk. An instance of the problem onnvariables is given bymapplications of constraints from\(\mathcal {F}\)to subsequences of thenvariables, and the goal is to find an assignment to the variables that satisfies the maximum number of constraints. In the (γ ,β)-approximation version of the problem for parameters 0 ≤ β ≤ γ ≤ 1, the goal is to distinguish instances where at least γ fraction of the constraints can be satisfied from instances where at most β fraction of the constraints can be satisfied. In this work, we consider the approximability of this problem in the context of sketching algorithms and give a dichotomy result. Specifically, for every family\(\mathcal {F}\)and every β < γ, we show that either a linear sketching algorithm solves the problem in polylogarithmic space or the problem is not solvable by any sketching algorithm in\(o(\sqrt {n})\)space. In particular, we give non-trivial approximation algorithms using polylogarithmic space for infinitely many constraint satisfaction problems. We also extend previously known lower bounds for general streaming algorithms to a wide variety of problems, and in particular the case ofq=k=2, where we get a dichotomy, and the case when the satisfying assignments of the constraints of\(\mathcal {F}\)support a distribution on\([q]^k\)with uniform marginals. Prior to this work, other than sporadic examples, the only systematic classes of CSPs that were analyzed considered the setting of Boolean variablesq= 2, binary constraintsk=2, and singleton families\(|\mathcal {F}|=1\)and only considered the setting where constraints are placed on literals rather than variables. Our positive results show wide applicability of bias-based algorithms used previously by [47] and [41], which we extend to include richer norm estimation algorithms, by giving a systematic way to discover biases. Our negative results combine the Fourier analytic methods of [56], which we extend to a wider class of CSPs, with a rich collection of reductions among communication complexity problems that lie at the heart of the negative results. In particular, previous works used Fourier analysis over the Boolean cube to initiate their results and the results seemed particularly tailored to functions on Boolean literals (i.e., with negations). Our techniques surprisingly allow us to get to generalq-ary CSPs without negations by appealing to the same Fourier analytic starting point over Boolean hypercubes. 
    more » « less
  5. We give an $$\widetilde{O}(\sqrt{n})$$-space single-pass 0.483-approximation streaming algorithm for estimating the maximum directed cut size (Max-DICUT) in a directed graph on n vertices. This improves over an $$O(\log n)$$-space $4 / 9 < 0.45$ approximation algorithm due to Chou, Golovnev, and Velusamy (FOCS 2020), which was known to be optimal for $$o(\sqrt{n})$$-space algorithms. Max-DICUT is a special case of a constraint satisfaction problem (CSP). In this broader context, we give the first CSP for which algorithms with $$\widetilde{O}(\sqrt{n})$$- space can provably outperform $$o(\sqrt{n})$$- space algorithms. The key technical contribution of our work is development of the notions of a first-order snapshot of a (directed) graph and of estimates of such snapshots. These snapshots can be used to simulate certain (non-streaming) Max-DICUT algorithms, including the “oblivious” algorithms introduced by Feige and Jozeph (Algorithmica, 2015), who showed that one such algorithm Previous work of the authors (SODA 2023) studied the restricted case of bounded-degree graphs, and observed that in this setting, it is straightforward to estimate the snapshot with $$\ell_{1}$$ errors and this suffices to simulate oblivious algorithms. But for unbounded-degree graphs, even defining an achievable and sufficient notion of estimation is subtle. We describe a new notion of snapshot estimation and prove its sufficiency using careful smoothing techniques, and then develop an algorithm which sketches such an estimate via a delicate process of intertwined vertex- and edge-subsampling. Prior to our work, the only streaming algorithms for any CSP on general instances were based on generalizations of the $$O(\log n)$$-space algorithm for Max-DICUT, and can roughly be characterized as based on “zeroth” order snapshots. Our work thus opens the possibility of a new class of algorithms for approximating CSPs by demonstrating that more sophisticated snapshots can outperform cruder ones in the case of Max-DICUT. 
    more » « less
  6. Tauman_Kalai, Yael (Ed.)
    We consider prophet inequalities subject to feasibility constraints that are the intersection of q matroids. The best-known algorithms achieve a Θ(q)-approximation, even when restricted to instances that are the intersection of q partition matroids, and with i.i.d. Bernoulli random variables [José R. Correa et al., 2022; Moran Feldman et al., 2016; Marek Adamczyk and Michal Wlodarczyk, 2018]. The previous best-known lower bound is Θ(√q) due to a simple construction of [Robert Kleinberg and S. Matthew Weinberg, 2012] (which uses i.i.d. Bernoulli random variables, and writes the construction as the intersection of partition matroids). We establish an improved lower bound of q^{1/2+Ω(1/log log q)} by writing the construction of [Robert Kleinberg and S. Matthew Weinberg, 2012] as the intersection of asymptotically fewer partition matroids. We accomplish this via an improved upper bound on the product dimension of a graph with p^p disjoint cliques of size p, using recent techniques developed in [Noga Alon and Ryan Alweiss, 2020]. 
    more » « less
  7. Nikhil, Bansal; Nagarajan, Viswanath (Ed.)
    We initiate a study of the streaming complexity of constraint satisfaction problems (CSPs) when the constraints arrive in a random order. We show that there exists a CSP, namely Max-DICUT, for which random ordering makes a provable difference. Whereas a 4/9 ≈ 0.445 approximation of DICUT requires space with adversarial ordering, we show that with random ordering of constraints there exists a 0.483-approximation algorithm that only needs O(log n) space. We also give new algorithms for Max-DICUT in variants of the adversarial ordering setting. Specifically, we give a two-pass O(log n) space 0.483-approximation algorithm for general graphs and a single-pass space 0.483-approximation algorithm for bounded-degree graphs. On the negative side, we prove that CSPs where the satisfying assignments of the constraints support a one-wise independent distribution require -space for any non-trivial approximation, even when the constraints are randomly ordered. This was previously known only for adversarially ordered constraints. Extending the results to randomly ordered constraints requires switching the hard instances from a union of random matchings to simple Erdős-Renyi random (hyper)graphs and extending tools that can perform Fourier analysis on such instances. The only CSP to have been considered previously with random ordering is Max-CUT where the ordering is not known to change the approximability. Specifically it is known to be as hard to approximate with random ordering as with adversarial ordering, for space algorithms. Our results show a richer variety of possibilities and motivate further study of CSPs with randomly ordered constraints. 
    more » « less
  8. Chakrabarti, Amit; Swamy, Chaitanya (Ed.)
    A Boolean maximum constraint satisfaction problem, Max-CSP(f), is specified by a predicate f:{-1,1}^k → {0,1}. An n-variable instance of Max-CSP(f) consists of a list of constraints, each of which applies f to k distinct literals drawn from the n variables. For k = 2, Chou, Golovnev, and Velusamy [Chou et al., 2020] obtained explicit ratios characterizing the √ n-space streaming approximability of every predicate. For k ≥ 3, Chou, Golovnev, Sudan, and Velusamy [Chou et al., 2022] proved a general dichotomy theorem for √ n-space sketching algorithms: For every f, there exists α(f) ∈ (0,1] such that for every ε > 0, Max-CSP(f) is (α(f)-ε)-approximable by an O(log n)-space linear sketching algorithm, but (α(f)+ε)-approximation sketching algorithms require Ω(√n) space. In this work, we give closed-form expressions for the sketching approximation ratios of multiple families of symmetric Boolean functions. Letting α'_k = 2^{-(k-1)} (1-k^{-2})^{(k-1)/2}, we show that for odd k ≥ 3, α(kAND) = α'_k, and for even k ≥ 2, α(kAND) = 2α'_{k+1}. Thus, for every k, kAND can be (2-o(1))2^{-k}-approximated by O(log n)-space sketching algorithms; we contrast this with a lower bound of Chou, Golovnev, Sudan, Velingker, and Velusamy [Chou et al., 2022] implying that streaming (2+ε)2^{-k}-approximations require Ω(n) space! We also resolve the ratio for the "at-least-(k-1)-1’s" function for all even k; the "exactly-(k+1)/2-1’s" function for odd k ∈ {3,…,51}; and fifteen other functions. We stress here that for general f, the dichotomy theorem in [Chou et al., 2022] only implies that α(f) can be computed to arbitrary precision in PSPACE, and thus closed-form expressions need not have existed a priori. Our analyses involve identifying and exploiting structural "saddle-point" properties of this dichotomy. Separately, for all threshold functions, we give optimal "bias-based" approximation algorithms generalizing [Chou et al., 2020] while simplifying [Chou et al., 2022]. Finally, we investigate the √ n-space streaming lower bounds in [Chou et al., 2022], and show that they are incomplete for 3AND, i.e., they fail to rule out (α(3AND})-ε)-approximations in o(√ n) space. 
    more » « less
  9. Chakrabarti, Amit; Swamy, Chaitanya (Ed.)
    We analyze the sketching approximability of constraint satisfaction problems on Boolean domains, where the constraints are balanced linear threshold functions applied to literals. In particular, we explore the approximability of monarchy-like functions where the value of the function is determined by a weighted combination of the vote of the first variable (the president) and the sum of the votes of all remaining variables. The pure version of this function is when the president can only be overruled by when all remaining variables agree. For every k ≥ 5, we show that CSPs where the underlying predicate is a pure monarchy function on k variables have no non-trivial sketching approximation algorithm in o(√n) space. We also show infinitely many weaker monarchy functions for which CSPs using such constraints are non-trivially approximable by O(log(n)) space sketching algorithms. Moreover, we give the first example of sketching approximable asymmetric Boolean CSPs. Our results work within the framework of Chou, Golovnev, Sudan, and Velusamy (FOCS 2021) that characterizes the sketching approximability of all CSPs. Their framework can be applied naturally to get a computer-aided analysis of the approximability of any specific constraint satisfaction problem. The novelty of our work is in using their work to get an analysis that applies to infinitely many problems simultaneously. 
    more » « less
  10. Leonardi, Stefano; Gupta, Anupam (Ed.)
    We consider the approximability of constraint satisfaction problems in the streaming setting. For every constraint satisfaction problem (CSP) on n variables taking values in {0,…,q−1}, we prove that improving over the trivial approximability by a factor of q requires Ω(n) space even on instances with O(n) constraints. We also identify a broad subclass of problems for which any improvement over the trivial approximability requires Ω(n) space. The key technical core is an optimal, q−(k−1)-inapproximability for the Max k-LIN-mod q problem, which is the Max CSP problem where every constraint is given by a system of k−1 linear equations mod q over k variables. Our work builds on and extends the breakthrough work of Kapralov and Krachun (Proc. STOC 2019) who showed a linear lower bound on any non-trivial approximation of the MaxCut problem in graphs. MaxCut corresponds roughly to the case of Max k-LIN-mod q with k=q=2. For general CSPs in the streaming setting, prior results only yielded Ω(√n) space bounds. In particular no linear space lower bound was known for an approximation factor less than 1/2 for any CSP. Extending the work of Kapralov and Krachun to Max k-LIN-mod q to k>2 and q>2 (while getting optimal hardness results) is the main technical contribution of this work. Each one of these extensions provides non-trivial technical challenges that we overcome in this work. 
    more » « less